Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans.
نویسندگان
چکیده
The development of hyperthermia during prolonged exercise in humans is associated with various changes in the brain, but it is not known whether the cerebral metabolism or the global cerebral blood flow (gCBF) is affected. Eight endurance-trained subjects completed two exercise bouts on a cycle ergometer. The gCBF and cerebral metabolic rates of oxygen, glucose, and lactate were determined with the Kety-Schmidt technique after 15 min of exercise when core temperature was similar across trials, and at the end of exercise, either when subjects remained normothermic (core temperature = 37.9 degrees C; control) or when severe hyperthermia had developed (core temperature = 39.5 degrees C; hyperthermia). The gCBF was similar after 15 min in the two trials, and it remained stable throughout control. In contrast, during hyperthermia gCBF decreased by 18% and was therefore lower in hyperthermia compared with control at the end of exercise (43 +/- 4 vs. 51 +/- 4 ml. 100 g(-1). min(-1); P < 0.05). Concomitant with the reduction in gCBF, there was a proportionally larger increase in the arteriovenous differences for oxygen and glucose, and the cerebral metabolic rate was therefore higher at the end of the hyperthermic trial compared with control. The hyperthermia-induced lowering of gCBF did not alter cerebral lactate release. The hyperthermia-induced reduction in exercise cerebral blood flow seems to relate to a concomitant 18% lowering of arterial carbon dioxide tension, whereas the higher cerebral metabolic rate of oxygen may be ascribed to a Q(10) (temperature) effect and/or the level of cerebral neuronal activity associated with increased exertion.
منابع مشابه
Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.
Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. ...
متن کاملVoluntary suppression of hyperthermia - induced hyperventilation mitigates the 1 reduction in cerebral blood flow velocity during exercise in the heat
31 Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce 32 arterial CO2 pressure (PaCO2) and, in turn, cerebral blood flow (CBF) and thermoregulatory 33 response. We investigated 1) whether humans can voluntarily suppress hyperthermic 34 hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on 35 PaCO2, CBF, sweating and skin ...
متن کاملCerebral blood flow and metabolism during exercise: implications for fatigue.
During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an...
متن کاملWhole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans
Cardiovascular strain and hyperthermia are thought to be important factors limiting exercise capacity in heat-stressed humans, however, the contribution of elevations in skin (Tsk) versus whole body temperatures on exercise capacity has not been characterized. To ascertain their relationships with exercise capacity, blood temperature (TB), oxygen uptake (V̇O2), brain perfusion (MCA Vmean), locom...
متن کاملDehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism
Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2002